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Alternatives for Modeling Results from the RAND
Health Insurance Experiment

Summary

The RAND Health Insurance Experiment (HIE) was ongoing from the mid-
1970sto theearly 1980s. Two thousand nonelderly familiesfrom six urban and rural
areas were randomly assigned health insurance plans with different levels of cost-
sharing (that is, with various levels of deductibles, coinsurance, and out-of-pocket
maximums). The results from this unprecedented health insurance experiment
showed that people facing higher cost-sharing (that is, they had to pay a higher
proportion of total health care costs out of their own pockets) had lower health care
spending than those in plans with lower cost-sharing. No similar experiment has
been performed since the HIE, so it remains the epochal analysis for understanding
the link between health insurance cost-sharing and total health care spending. This
report examines the methods used to apply the HIE resultsin health policy analyses.

The key variable used to try to explain health care spending in the HIE was the
plans coinsurance — that is, the percentage of total heath care costs that the
individual must pay. Understanding these results from the HIE was complicated by
thefact that for each coinsurancerate, therewere multiple plans, each with adifferent
out-of-pocket maximum (although the maximum never exceeded $1,000). For
example, a person may have been enrolled in the “25% coinsurance plan,” but after
that person had spent $1,000 (or |ess) out of pocket, the plan effectively becamea0%
coinsurance plan. Thus, the nominal coinsurance could not be used asthe sole cost-
sharing variable for explaining the impact of cost-sharing in the HIE plans.

TheHIE resultshave been particularly useful for policy anal ysts estimating what
effect changesin cost-sharing might have on health care spending— in public health
insurance programs, for example. Microsimulation modeling is one tool used by
health policy analyststo estimate theimpact of cost-sharing changes. “Micro” refers
to the fact that the modeling takes place on an individua level rather than an
aggregate level, based on a database of individuals representative of a certain
population (the U.S. population or a smaller subset, such asindividuals enrolled in
Medicaid). If one wanted to estimate the impact of an increase in coinsurance, for
example, amicrosimulation model would apply that increase to every personin the
data along with a concomitant drop in total health care spending.

In most health insurance modeling, the HIE results remain the basis for
adjusting total health care spending in response to cost-sharing changes. However,
applying thoseresultsinamodel isnot aways straightforward. One of two methods
is typicaly used — eladticities, generally preferred by health economists, and
induction, preferred by actuaries. Each has benefits and shortfalls, but little
comparative analysis has been done. Thisreport begins by generally describing and
comparing elasticities and induction factors. The report then summarizes key
findings from the HIE and discusses how elasticities and induction factors can be
used to replicate those results. Because of the limitations of these methods in
modeling, thisreport offersathird alternative that appearsto better replicatethe HIE
results. This method, called the cubic formula, is smply a formula that produces
HIE-reported spending levels from the experiment’ s four coinsurance levels.
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Alternatives for Modeling Results from the
RAND Health Insurance Experiment

Changesinhealthinsuranceplans’ cost-sharing (for example, thedeductibleand
coinsurance) affect the quantity of health servicesused, according to resultsfrom the
seminal RAND Health Insurance Experiment (HIE) of the 1970s and 1980s.
Generally speaking, if aperson’ scost-sharing increases, lesshealth carewill be used;
if cost-sharing decreases, more health carewill beused. Economistsaccount for such
changeswith ameasure called ademand elasticity; actuaries have arelated measure,
called induction factors.

These two methods are used in health insurance models, usually with the
purpose of replicating the HIE results. Neither of these methods is perfect or even
perhapsinherently preferable. Moreover, convertingthe HIE resultsinto appropriate
elasticities or induction factors is not always straightforward. The use of each has
benefits and shortfalls, but little comparative analysis has been done.

The Congressional Research Service (CRS) has partnered for more than a
decade with actuariesfrom the Hay Group to formul ate microsimul ation model sthat
provide estimates of the actuaria value of health insurance plans. To account for
changesin cost-sharing, these modelsuseinduction factors. CRSand Hay areinthe
process of a significant overhaul of these models. As part of that process, the
application of themodels induction factorswas assessed and comparedto el asticities
and another aternative presented in thisreport, the cubic formula. Thisreportisthe
documentation of that assessment.

This report begins with a basic explanation of elasticities and their health
insuranceapplications. Inductionfactorsaresimilarly described then contrasted with
elasticitiesfrom atheoretical standpoint. Such an elementary explanationisintended
to ensurethat the key distinctionsand limitations of elasticitiesand induction factors
are not missed, particularly for their applications in modeling. The next section of
the report reviews some of the key findings from the RAND Health Insurance
Experiment. Finaly, the report discusses how best to replicate HIE results using
elasticities, induction factors, and the cubic formula.

In short, this report assesses the ability of the three methods to consistently
replicate certain RAND Health Insurance Experiment results. Because health care
and peopl €' s responsiveness to its costs may have changed in the decades since the
HIE’ simplementation, the method that best replicatesthe HIE results may not in fact
best represent current responsiveness to health care cost-sharing. Whether people’'s
responsiveness has changed is difficult to know without another experimental study
like the HIE. However, on the specific question of which method is best for
replicating the HIE results, this report points to the cubic formula.
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Theoretical Explanation of Cost-Sharing Methods

Elasticity of Demand

Theelasticity of demand isanumber that approximates the effect that achange
in price has on the quantity purchased of a good or service. In other words,
elasticitiesare used to answer thisquestion: If the original quantity (Q,) of agood or
serviceis purchased at the original price (p,), how many units would be purchased
(Qy) at adifferent price (p,)?

For two given prices (p, and p,) and the two associated quantities (Q, and Q,),
the elasticity is defined as the percentage change in quantity resulting from a one
percent changein price. Starting from a particular point (p,, Q,), thisis represented
algebraically asfollows:

Ql_QO
W Ewn = 520
O

0
For example, a car dealership knows that if its price on a particular model is

$30,000, it will sell 500 of those cars in the year; however, if it dropsits price to
$27,000, it will sell 600. The point elasticity would then be calculated as follows:

00 5% 20%

_ _ 0 _

(2) Evwin =27000 —30,000 — =10% = 2
30,000

Because the absolute value of the elasticity is greater than one, it denotes that
people are very responsiveto price changesfor thismodel. Specifically, a10% drop
in price would yield a 20% increase in quantity demanded.

Those dealing with elasticities aspire to apply a particular value, say -2, to all
different pricesand quantitiesfor that good. However, point elasticitiesdo not yield
consi stent results; asacost-sharing factor, they lack certain desirableproperties. One
such property is reversibility, which means that the calculation of a cost-sharing
factor (based on two points) yields the same result regardless of which point is
considered the starting point (p,, Q,). Point elasticities are not reversible, as
demonstrated below by using the same two points used in Eq. (2) but switching the
starting point. The elasticity below, -1.5, does not match the previous one, -2:

500 -600
_ 600 - _15
point — 30,000-27,000 =
27,000

3) E

Toobtainthesameelasticity from agiven pair of points, arc elasticitiesare used
instead of point elasticities. In other words, arc elasticities are reversible. Arc
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elasticities are calculated as (change in quantity divided by average quantity) /
(change in price divided by average price), or:

Ql_ Qo

12
@ Eypm 2

(Pt Py)/2

Using the prior example, the arc elasticity is the following, and does not vary
regardless of which is chosen as (p,, Qp):

600 —500
(600 +500)/2
(®) Bac~27000-30,000 - 173
(27,000 30,000)/2

Asin thisexample, the arc elasticity (-1.73) is often close to the average of the
point elasticities (-1.75).

In addition to reversibility, another advantage of the arc elasticity is that it is
defined even if any of the parameters equals zero. In the point-elasticity formula, if
either p, or Q, is zero, the elasticity cannot be calculated. For these reasons, arc
elasticities are generally favored by health economists over point elasticities.

Althoughthearc el asticity may be nearly aseasy to calcul ate, the point el asticity
isoften easier to apply when predicting quantity (Q,). Eg. (6) showstheformulathat
results from solving the point-elasticity formulain Eq. (1) for Q,.

(6)
Q1 point = Qo (1 + E(P1-Po)/Po)

Eq. (7) showstheformulathat resultsfrom solving the arc-elasticity formulain
Eq. (4) for Q,.

(7)
Q1ac = Qu(EPy - EP; - Py - Po) / (EPs- EPy- Pi- Po)

The temptation is to take an arc elasticity and predict Q, based on the point-
elasticity formula in Eq. (6). However, this does not yield proper results. To
illustrate, apply the previously calculated arc elasticity (-1.73) to predict Q, when p,
is $27,000 and the starting point is ($30,000, 500). Although the actual Q, is 600,
the point-elasticity version of Q, yields586. For the point-elasticity version of Q, to
yield 600, the original point elasticity of -2 would have to be used. Although it is
more unwieldy, the arc-elasticity version of Q, in eqg. (7) yields the proper result (in
this case, 600) when applying the arc elasticity.
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In other words, when predicting quantity using el asticities, itiscritical tousethe
Q, formula that corresponds with the elasticity used, whether arc or point.* The
additional complication of applying the point elasticity is that, because it is not
reversible, onemust determinewhich point el asticity to use; when predicting Q, from
aparticular (p,, Q,), itisbest to choose the point-el asticity value based on the starting
point closest to the oneit is being applied to.

Health Insurance Applications. Calculating elasticitieswhen individuals
are covered by health insurance is complicated by the fact that the price paid by
consumers for health care (that is, their cost-sharing) is usually not the full price of
that care. For example, the average price of a hospital stay may be $5,000, but the
insured’ s effective “price” would be only the cost-sharing — a $750 deductible, for
example. Thiseffective price, theperson’ sout-of-pocket liability, iswhat influences
their behavior rather than thetotal price. Thus, whenlooking at elasticitiesfor health
insurance purposes, the prices (p, and p,) are generally the prices paid by the
individual out of pocket rather than the actual total price for the good or service.

Inaddition, it isoften difficult to measure the quantity of health care purchased.
When deriving an easticity for health care, what should be used for “quantity”?
Fortunately, thereisaway around this dilemma, using the fact that the total amount
spent on health care (i.e., the person’s out-of-pocket payments plus payments by
insurance) is the actual price of the good or service (not just the out-of-pocket
amount) multiplied by the quantity used. Therefore, the percentage change in total
spending would be as follows, with P, and P, representing the actual price of the
good or service, not just the out-of-pocket amount:

PlQl B I:)OQO

(8) % A intotal spending =
PQo

However, in calculating elasticities based on cost-sharing changes, we assume
that the actual price of the health good service does not change— that is, that P, and
P, areequal. Assuch, pricefalls out of the equation so that the percentage change
in total spending is equivalent to the percentage change in quantity demanded:

PQl' PQo _ Ql' Qo

0 QO

(9) % A intotal spending = =% A in quantity demanded

Thus, the easiest way empirically to calculate an elasticity for health careisto
use the percentage change in total spending as the percentage change in quantity
demanded. This appliesto al of the uses of “quantity” for the remainder of this
report.

For example, an insurance company contracts with physicians so that atypical
office visit is $100, or P. On average, its enrollees make three visits per year, for

LIt is possible to use an arc elasticity in the point-elasticity formula for Q, and obtain the
appropriate Q, by using a multiplicative factor. However, calculating that factor is more
cumbersome than simply using the appropriate formulain Eq. (7).
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total spending of $300 per enrollee for the office visits. The enrollees must pay a
copayment per visit of $5 (acoinsurance of 5%). Thefollowing year, the plan keeps
its contract arrangements the same with physicians but increases its copayments to
$25 for office visits (a coinsurance of 25%). The result isthat the average number
of visits dropsto 2.25, for total average spending of $225. From these figures, the
arc elasticity is calculated as follows:

225-300

(225 +300)/2
(10) E,. = —5_5 = -0.21429

@5+5)2

Because the absolute value of this elasticity (0.21429) is less than one (and
closer to zero), one would say the demand for thistype of careisrelatively inelastic.
That is, a substantial change in the effective price of care led to arelatively small
change in the amount of care demanded.?

Nevertheless, the example is a much-ssimplified version of the cost-sharing
structure for the range of services in most health insurance plans, which have
deductiblesand out-of -pocket maximumsin addition to copaymentsand coinsurance
that may vary by type of service. As aresult, precisaly determining p, for actual
health insurance plansis not straightforward; p, becomes a function not only of the
new cost-sharing structure but of Q,, thevariablewe seek to derivefrom p,. Because
of this simultaneous (some might say circular) relationship, elasticities appear to be
limited outside of applications to plans with only coinsurance cost-sharing.?

Induction Factors

Induction factors are not discussed as commonly as elasticitiesin health policy
circles. A thorough literature review on the topic came up with only a handful of
references, al several years old.* Like elasticities, induction factors are used to

2With an explicit measure of quantity (number of visits), because the underlying total price
($100) remained the same, the arc el asticity would yield the same result whether using that
guantity or total spending, affirming what was shown in Eq. (9). From the two data points
in this example, the point elasticities would be -0.0625 and -0.4167, depending on which
point was chosen asthe start. Thisis quite alarge range for describing the impact of cost-
sharing changes.

3 A plan’ saverage coinsuranceis often estimated in an effort to make el asticities applicable,
which is discussed later in this report.

*Daniel Zabinski et al., “Medical SavingsAccounts: Microsimulation ResultsfromaM odel
with Adverse Selection,” Journal of Health Economics, volume 18 (1999), pp. 195-218.
(Hereafter cited as Zabinski, et al., Medical Savings Accounts.) Edwin Hustead et a.,
“Medical SavingsAccounts: Cost Implications and Design Issues,” American Academy of
Actuaries’ Public Policy Monograph No. 1, May 1995, at
[http://www.actuary.org/pdf/health/msa_cost.pdf]. Hustead isalso the principal actuary at
the Hay Group for the CRS contract on the valuation models. Documentation on those
models regarding induction factorsis very similar to the write-up in the MSA monograph.

(continued...)
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predict the impact of cost-sharing changes on total health care spending. The key
advantage of induction often touted over elasticitiesis that its factors are relatively
easy to apply on all plan types, even those with complicated cost-sharing structures.
“Moving beyond the simplified case of pure coinsurance, the actuarial method [of
induction] offersatractable, albeit imperfect, approximation to the actual changein
medical care.”® It avoids elasticities’ circular conundrum by applying the new cost-
sharing structure to the original spending. It does this by calculating the dollar
amount of out-of-pocket payments (OOP) under the old and the new cost-sharing
structures, holding total spending (Q,) constant. Wherel isthe induction factor and
OOP,. denotes the dollar amount paid out of pocket based on the new cost-sharing
structure but the old quantity demanded, Q, is predicted as follows:

(11)
, =Q, + 1 (OOP, - OOP,.)

Solving this equation for the induction factor yields the following:

12)
| =(Q; - Q) / (OOR, - OOP,..)

Egs. (11) and (12) illustrate that an induction factor isavery different measure
from an elasticity, even though both may try to replicate similar impacts of cost-
sharing changes on total health care spending. The value of an elasticity represents
the percentage change in quantity resulting from aone percent changein price. The
value of an induction factor is the percentage of the differencein two plans' out-of-
pocket payments that directly affects total health care spending.

For example, aperson hastotal health care spending of $5,000, of which $4,000
is paid by a health insurance plan and $1,000 out of pocket. Another plan in which
the person had total spending of $5,000 may require $1,500 out of pocket, a $500
increase. An induction factor of 70%, or 0.7, means that total health care spending
would be reduced by 70% of the out-of -pocket difference between the plans (70% of
$500, or $350). Thus, under the new plan with higher cost-sharing, total health care
spending for the person would be predicted to drop to $4,650 (that is, $5,000 - $350).

Althoughinductionfactorsand el asticitiesarevery different measures, thereare
casesin which they can be shown to be closely related. For example, in planswhere
the cost-sharing can be represented as a pure coinsurance, the induction formula’ s
OOP,. can bewritten asQp;, and OOP, as Q,p,. Inthat case, Eq. (11) can bewritten
as shown in Eq. (13), which can be solved for the induction factor, as shown in Eq.
(14):

* (...continued)

“Methodological Description of Health Care Reform Premium and Discount Estimates,”
addendum to The White House Domestic Policy Council, “Health Security Act: The
President’s Report to the American People,” Oct. 1993, at
[http://www.ibiblio.org/pub/academic/medicine/Health-Security-Act/supporting
-documents/method2.txt] .

® Zabinski et al., Medical Savings Accounts, p. 200.
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(13) Q1 =Q+ Qul(Po- 1)

Q]_ - Qo
Q

Po-Pq

14 1=

The following emerges by dividing both the numerator and denominator of the
right-hand side of Eq. (14) by -p,:

Ql'Qo
Q -1 _
(15) I = P- P X p_o - Epoint/ Po
Py

Through similar algebraic manipulations, the induction factor can also be
written as follows:

(16)
| = - E4c (Qu+ Qo) / [Qo(py + Po)]

These last two equations may not have widespread practical applications.
However, they both illustrate that induction factors can be expressed asafunction of
elasticities, both point and arc, in their pure coinsuranceforms.® They also highlight
an issue that isindicated by the Q, in the denominator of Eg. (16) and in the upper
denominator of Eqg. (14) — that induction factors are not reversible. That is,
induction factors calculated from two pointswill yield different val ues depending on
which of the two points was chosen as the starting point. This is the same
shortcoming that point elasticities have, and Eq. (15) does not fix this. Arc
elasticities do not have this shortcoming, thus the induction-factor equation as a
function of the arc elasticity in Eq. (16) necessarily places Q, in the denominator to
introduceit. Because two values for the induction factor result from any two price-
guantity data points, care must be taken to choose the correct one, depending on the
Q, used to create the factor and the Q, used to predict cost-sharing changesin anew
plan.

Health insurance applications. Using the office-visit example presented
earlier, Eq. (14) yields the following induction factor:’

225 -300
300

17 1= —>— =125
5% - 25%

6 Zabinski et al., Medical Savings Accounts, shows another version of the induction factor
as afunction of the arc elasticity.

"Egs. (12), (15) and (16) also yields an induction factor of 1.25.
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Induction factors' lack of reversibility is demonstrated once more by reversing
the parameters of the office-visit example and calculating that induction factor:

300 -225
225

(18) | = -
25% - 5%

1.67

In sum, although induction factors appear to enable abetter analysis of agreater
variety of health insurance plans, compared to arc elasticities, they are not
unambiguously superior — one reason being that they are not reversible.
Specifically, the use of induction factors could lead to flawed resultsif asingle value
is being used across a domain of coinsurance levels.

Additional Comparisons

In elementary algebra, the dope of a line is defined as rise over run —
specifically, the change in the dependent variable (y) divided by the change in the
independent variable (x). Thus, the equation for the linear slope between two price-
quantity data points is (Q, - Qu)/(p, - P,)-2 Substituting this in the cost-sharing
formulas previously discussed yields the following:

(19) Epoint = SIOpe* (pO/ QO)
(20) E, = slope ™ (average p) / (average Q)
(21) | = dope/ -Q,

Interestingly, if the predicted quantity (say, Q,) based on some price (p,) is
calculated from a starting point (p,, Q,) based on one of the original points used to
calculate the factors above, the equation is reduced to the following for both point
elasticities and induction factors:

(22) Q,=Q, + slope™* (p, - py)

This results in a straight line with the original slope and passing through the
original data points.® From the office-visit example, moving from 5% to 25%
coinsurance yields an induction factor of 1.25 and a point elasticity of -0.0625.
Applying these factors in the domain of 5% to 25% coinsurance to predict quantity
yields the straight linein Figure 1, as Eq. (22) would predict.

8 Economists tend to flip the axes when dealing with price and quantity to create ademand
curve with aslopethat isthe reciprocal of thisone. For this report, traditional graphs and
slopes are used, with apologies to economists who would prefer straightforward demand
Ccurves.

® The derivative of Q, with respect to p, yields the original slope.
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Figure 1. Predicted Expenses Using Various Cost-Sharing Methods,
from Example Case
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Source: Congressional Research Service (CRS) example and calculations.

This characteristic has important implications for applying the RAND HIE
results, discussed later.’® However, similarly substituting Eg. (20) in the predicted-
quantity formulafor arc elasticities, Eq. (7), does not yield asimplified equation of
any sort.** Using the arc-elasticity formulas, predicted quantity yields a non-linear
curve — an arc. That arc will pass through the origina pair of data points if the
starting point (p,, Q) used to predict quantity is one of the original datapoints. The

19 The samelineresultswhen switching the starting point of thetwo original datapointsand
when using the appropriate, other point elasticity or induction factor.

™ In lieu of using the substitution of the slope, cal culus can be used to find some simplified
form for the predicted quantity based on the arc-elasticity formula. Let Eq. (7) predict aQ,
based on some p,, given a constant elasticity calculated from two original data points. The
derivative of Q, with respect to p, yields a complicated equation. The gist of the resulting
equation is that p, appears only in the denominator, as a quadratic formula. This is
consistent with the arc that results from applying Eq. (7), asin Figure 1.
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arcinFigurelillustratesthisfor the coinsurance domain of 5% to 25%, using (5%,
300) asthe starting point and -0.21429 as the arc elasticity.

The concavity of the arc also indicatesthat responsesto cost-sharing will not be
constant, asisthe caseusing point elasticitiesand induction factors. Specifically, the
concavity results in greater responsiveness at lower prices than at higher prices,
withintheapplicabledomain. Whether thisispreferableto aconstant responsiveness
probably depends on the good or service being analyzed. With respect to the demand
for health care, this concavity is consistent with the HIE results discussed later —
that people are more responsive to cost-sharing changes when their cost-sharing is
relatively small, compared to the response when their cost-sharing is higher.

Another desirable property of cost-sharing factors in addition to those
mentioned earlier is path neutrality — that is, when using afactor’ s particular value
(based on two data points), the predicted quantity for a given price should be
identical regardless of which point is chosen asthe start (p,, Q,).*> For example, the
straight linein Figure 1 (frominduction factorsand point el asticities) resultswhether
using (5%, 300) or (25%, 225) as the starting point. However, in spite of the
reversibility of the underlying factor, arc elasticities are not path neutral. Thearcin
Figure 1 would be dlightly different had (25%, 225) been used as the starting point.
Beginning at the higher price, the resulting arc would not bulge as much from the
straight line. At 15% coinsurance, for example, the quantity at the straight lineis
262.5; onthearcin Figurel, it is 241.9; if the starting point had been (25%, 225),
the quantity onthearc would havebeen at 250.5. At 15% coinsurance, thedifference
in the estimated quantity between the arc-elasticity resultsis approximately 3.5%.

In the previous examples, the starting point (p,, Q,) used to predict quantity has
always been one of thetwo original pointsused in cal cul ating the cost-sharing factor.
However, when applying agiven cost-sharing factor, the datamay require beginning
from aknown point that isnot one of the original points (if those original pointswere
even known). Inthe office-based example — given theinduction factor of 1.25, the
point elasticity of -0.0625, and the arc elasticity of -0.21429 — assume a plan has
15% coinsurance (p,) and that an analyst wantsto predict arange of quantities based
on changes to that coinsurance. If a cost-sharing factor is path neutral, then the
predicted quantities in this example should be the same as illustrated in Figure 1.
Assuming this would be the case, the Q, associated with the 15% coinsurance was
taken from the points on the linesin Figure 1 — 262.5 for the point-elasticity and
induction formulas, and 241.9 for the arc-elasticity formula.

Figur e 2 showsthe predicted quantities generated from abeginning coinsurance
of 15% and applying the various cost-sharing methods. The dark lines are the
original onesfrom Figure 1 with which theresultswould coincide if they were path
neutral. However, none of the three cost-sharing methods — point elasticities,
induction factors or arc elasticities — is path neutral. The dashed lines show the
predicted quantities based on the el asticities, with the straight line based on the point
elasticity and the arc based on the arc dasticity; the light, solid line shows the

12Tom Selden, an economist at the Agency for Healthcare Research and Quality (AHRQ),
came up with this name for the concept.
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predicted quantities based on theinduction factor. All of the methods reproducethe
Q, on which the predicted quantities in the figure were based, at 15% coinsurance.
Only the arc elasticity matches the original data point (5%, 300). Note that none of
the methods obtains the original point of (25%, 225).** Thislack of path neutrality
isaseriouslimitation of all these cost-sharing methods, theimplicationsof which are
discussed in detail in the section on the methods' ability to replicate HIE results.

Figure 2. Predicted Expenses Using Various Cost-Sharing Methods and
Values, from Example Case Results at 15% Coinsurance
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Source: Congressional Research Service (CRS) example and calculations.

Note: The two dark lines are the original results shown in Figure 1. Idealy, the factors would be
path neutral; because they are not, each of the three factors yields predicted quantities that do not
coincide with the original lines. See text for description of results.

13 Asdemonstrated previously, arc elasticities are not path neutral even when using one of
thefactor’ soriginal points asthe starting point for predicting quantity. The other predicted
guantity associated with 15% coinsurance (Q,=250.5) would have yielded yet another
distinct arc in Figure 2, this one passing through the original point of (25%, 225) but not
(0%, 300).
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RAND Health Insurance Experiment

The RAND Health Insurance Experiment (HIE) was ongoing from the mid-
1970sto theearly 1980s. Two thousand nonelderly familiesfrom six urban and rural
areas were randomly assigned health insurance plans with different levels of cost-
sharing. The results from this unprecedented health insurance experiment showed
that peoplefacing higher cost-sharing (that is, they had to pay a higher proportion of
total health care costs out of their own pockets) had lower health care spending that
those in plans with lower cost-sharing. No similar experiment has been performed
sincethe HIE, so it remainsthe epochal analysisfor understanding the link between
health insurance cost-sharing and total health care spending.

Thekey variable used to explain health care spending in the HIE was the plans
coinsurance — that is, the percentage of total health care costs that the individual
must pay. Four coinsurance rates were used: 0% (called the free plan, in terms of
there being no cost-sharing), 25%, 50%, and 95%. However, for each coinsurance
rate, therewerethree plans, each with adifferent out-of-pocket maximum: 5%, 10%,
or 15% of family income, up to a maximum of $1,000.** A person may have been
enrolled in the “25% coinsurance plan,” but after that person reached the out-of-
pocket maximum, the plan effectively became a0% coinsurance plan. Thus, theHIE
results need to be understood in the context of other variables besides the nominal
coinsurance, particularly the out-of-pocket maximum.

Selected Results

From the HIE data, the RAND authors calculated annual per-person medical
spending, controlling for factors such aslocation and factorsthat affect likelihood of
having a medical expense.™® These results are shown in Figure 3 for the four
coinsurance levels (incorporating al the out-of-pocket maximums), with the four
points connected by line segments.

As shown in the figure, average free-plan spending was $1,019 (in 1991
dollars). Plans with a nominal coinsurance of 25% averaged $826 in spending,
significantly less than in the free plan (p<0.001). At the 50% nominal coinsurance
level, spending averaged $764, significantly less than in the 25% plans (p=0.05,
t=1.97). Planswith anominal coinsurance of 95% averaged $700 in spending, less
than in the 50% plans (p=0.06, t=1.93). Note that for the remainder of this report,
many results are shown rounded, even if their usage later on is based on the
unrounded amounts. This may cause others’ resultsto differ slightly.

14 More information on the design of the experiment is available from many sources,
including Joseph P. Newhouse et al., Free for All? Lessons from the RAND Health
Insurance Experiment (Cambridge, Massachusetts: Harvard University Press, 1993).
(Hereafter cited as Newhouse, Freefor All?). Authors of the HIE often refer to the out-of-
pocket maximum as the Maximum Dollar Expenditure (MDE). There were a couple other
planswith dlightly different cost-sharing designs, but they received lessattentioninthe HIE
results.

15 All of the results in this section are based on the average annual per-person medical
spending based on the four-equation model, described in Chapter 3 of Newhouse et al.
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Figure 3. Effect of Nominal Coinsurance on Annual Per-Person
Medical Expenses, in Dollars, from RAND Health Insurance
Experiment
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Source: Table 3.3, Joseph P. Newhouse et al., Free for All? Lessons from the RAND Health
Insurance Experiment (Cambridge, Massachusetts: Harvard University Press, 1993).

Note: Expenses exclude dental and outpatient psychotherapy. For each coinsurance rate, there are
multiple plans, each with its own out-of-pocket maximum (none exceeding $1,000).

Because the dollar amounts are for 1991, it is useful to standardize the results,
with the free-plan spending ($1,019) asthe base for comparing health care spending.
Spending in the 25% coinsurance plan would be represented as having 81% of the
free-plan spending, and so on. Thisis shown by the points connected by the heavy
solid line segmentsin Figure 4.

As previously mentioned, the effect of the plan’s coinsurance is diminished by
its particular out-of-pocket maximum. The RAND authors noted, for example,
“individuals who exceeded the [out-of-pocket maximum] tended to increase their
spending on al [health care] episode types.”*® The authors then took steps to
estimate the “pure price effect” of the coinsurance, estimating how much spending

® Newhouse et al., Free for All?, p. 105.
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would occur in each coinsurance in the absence of any deductibles or out-of-pocket
maximums. Thisisshown in Figure 4 by the points connected by the lighter solid
line segments.

As expected, average health care spending at a given coinsurance rate is lower
if there is no out-of-pocket maximum, compared to levels with an out-of-pocket
maximum. These estimates are from Table 4.17 of Newhouse et a., in which
Chapter 4 provides a detailed description of how these estimates were obtai ned.

Figure 4. Effect of Nominal Coinsurance on Annual Per-Person
Medical Expenses, as a Percentage of Free Plan Expenses
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Source: Tables 3.3 and 4.17, Joseph P. Newhouse et al., Free for All? Lessons from the RAND
Health Insurance Experiment (Cambridge, Massachusetts. Harvard University Press, 1993).

Note: Expenses exclude dental and outpatient psychotherapy. For each coinsurance rate, there are
multiple plans, each with its own out-of-pocket maximum (none exceeding $1,000).

Using only thenominal coi nsurancefrom planswith an out-of -pocket maximum
to estimatetotal spending rai sesconcerns, sinceit overlooksthe plan’ sout-of-pocket
maximum, which can have alarge impact on total spending, asillustrated in Figure
4. An dternative is to calculate the average coinsurance individuals faced in the
plans. For example, aperson with $10,000 in spending in the typical HIE 25% plan
would not have had $2,500 in out-of-pocket spending; becausethe HIE planslimited
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out-of-pocket expenditures, the most the person would have spent out of pocket was
$1,000. Had the person’s out-of-pocket expenditure been $1,000, the average
coinsurance would have been 10%, not the nominal 25%. Becauseit reflectsall cost-
sharing (nominal coinsurance aswell as deductibles and out-of-pocket maximums),
theaverage coinsurance, rather than thenominal coinsurance, isarguably apreferable
single value for representing a plan’s overall cost-sharing.

Figure 5. Effect of Average Coinsurance on Annual Per-Person
Medical Expenses, as a Percentage of Free Plan Expenses
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Source: From the preceding figure, except the average coinsurance for plans with an out-of-pocket
maximumisfrom Table 9, Willard G. Manning et al., “Health I nsurance and the Demand for Medical
Care: Evidence from a Randomized Experiment,” The American Economic Review, vol. 77, no. 3
(June 1987), pp. 251-277.

Notes: Compare the dark line in this figure to the dark line in the preceding figure. The only
differenceisthat the x-valuesin Figure 4 are based on the nominal coinsurance whilein thisfigure
they are based on the average coinsurance. Over its applicable domain, the average coinsurance for
plans with an out-of-pocket maximum yields spending in line with the pure price effects from pure-
coinsurance plans. For pure-coinsurance plans, the nominal coinsurance is equa to the average
coinsurance. Expenses exclude dental and outpatient psychotherapy.
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Using the HIE data, the 25% plans’ average coinsuranceis 16%, the 50% plans
IS 24%, and the 95% plans’ is 31%. Thisis shown by the points connected by the
heavy solid line segmentsin Figure5, along with the previous points from the pure
price effects (that is, for pure-coinsurance plans) from Figure4. Over itsapplicable
domain, the average coinsurance for plans with an out-of-pocket maximum yields
spending in line with the pure price effects from pure-coinsurance plans.”

The concordance of these results is what one might have expected. It also
makes applying these results convenient. First, microdata on hedth care
expenditures rarely provide cost-sharing information like a plan’s nominal
coinsurance. The results in Figure 5 suggest that such information may not be
necessary — that the average coinsurance paid by a person, even in a plan with a
complicated cost-sharing structure, should be as reliable in deriving and applying
cost-sharing factors as that of a pure-coinsurance plan.

In addition, the average coinsurance of the typical HIE plans did not exceed
31%. However, indealingwithindividuas' expendituredata, somepeoplemay have
faced high cost-sharing. For example, many people may have had health care
expenses that never reached their plan’s deductible, thus facing an average
coinsurance of 100%. Cost-sharing factors calculated from the HIE at an average
coinsurance of 31% may not be appropriate when applied at 100% coinsurance.
Because the pure price effects are estimated for coinsurance up to 95% and are
consistent with the typical HIE plans through their average coinsurance domain of
31%, one can justify using cost-sharing factors from the pure price effects for
applicationto all average coinsurancelevels, regardliessof the complexity of aplan’s
underlying cost-sharing structure.

Because of the potentially broader application of the HIE’ s estimated pure price
effects, Table 1 is provided, which shows these effects for outpatient and inpatient
careaswell asthetotal. Itisworth noting that for up to 25% coinsurance, spending
does not differ by outpatient versus inpatient care, relative to free-plan spending.

Table 1. Estimated Pure Price Effects of Coinsurance on
Medical Expenses, as a Percentage of Free Plan Expenses

Pure coinsurance | Outpatient Inpatient Total medical Dental
0% 100% 100% 100% 100%
25% 71% 71% 71% 79%
50% 58% 68% 63% 68%
95% 49% 60% 55% 50%

Source: Table 4.17, Joseph P. Newhouse et al., Free for All? Lessons from the RAND Health
Insurance Experiment (Cambridge, Massachusetts: Harvard University Press, 1993).

Note: Computed assuming estimates weighted by shares of spending occurring when enrollees are
far fromreachingthe plans’ out-of-pocket maximum. For total medical, the shares are 46% outpatient
and 54% inpatient.

" For pure-coinsurance plans, the nominal coinsuranceis equal to the average coinsurance.
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Calculating and Applying Cost-Sharing Methods
Based on HIE Results

In this section of the report, cost-sharing factors (arc elasticities and induction
factors) are calculated from the HIE resultsin Table 1."® Inthis section, oncethearc
elasticitiesand theinduction factorsare cal cul ated, variationsintheir application and
the results are discussed.

Onegoa of thisanalysisis to demonstrate how the factors might be applied in
amicrosimulation model, using the structure of the CRS/Hay model s as an example.
The CRS/Hay models use expenditure data from individuals who are enrolled in
health insurance plans with innumerable (and unknown) cost-sharing structures.
Using the expenditure data by source of payment (that is, out-of-pocket versus
insurance-paid expenses), the first step is to standardize the data, applying cost-
sharing factorsto produce expenditure levelsasif everyonewerein afree plan. The
estimated free plan data then becomes the baseline against which cost-sharing
arrangements are applied.

Table 2. Arc Elasticities Between Average Coinsurance
Amounts, By Type of Service

Average
coinsurancerange| Outpatient I npatient Total medical Dental
0% - 25% -0.17 -0.17 -0.17 -0.12
0% - 50% -0.27 -0.19 -0.23 -0.19
0% - 95% -0.34 -0.25 -0.29 -0.33
0% - 25% -0.17 -0.17 -0.17 -0.12
25% - 50% -0.30 -0.06 -0.18 -0.22
50% - 95% -0.27 -0.20 -0.22 -0.49
25% - 95% -0.31 -0.14 -0.22 -0.39

Source: Congressional Research Service (CRS) calculationson datain Table 1, whichisfrom Table
4.17, Joseph P. Newhouse et al., Freefor All”? Lessons fromthe RAND Health Insurance Experiment
(Cambridge, Massachusetts: Harvard University Press, 1993).

Arc Elasticities

Table 2 displays the arc elasticities calculated according to Eq. (4) and based
on the coinsurance (p, and p,) and spending levels (Q,and Q,) in Table 1. Thefirst
three rows show the arc el asticities when compared to the free plan. The next three
display the arc elasticities between consecutive coinsurance rates. The last row
shows the arc elasticity between 25% and 95% coinsurance.

18 Point elasticities are no longer in the discussion for a couple reasons. First, one of the
four coinsurance levels used in the HIE is 0%, a value which makes the point-elasticity
formulaundefined. When the point elasticity performs best, its results coincide with those
using induction factors. Otherwise, asillustrated in Figure 2, the application of the point
elasticity is far from optimal.
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The key column in Table 2 is the shaded one showing elasticities for “total
medical.” These values vary, depending on the average coinsurance range used.™
Even if an analyst were to carefully select an elasticity according to these results,
choosing a value is not always straightforward. Consider a person in a plan with
15% pure coinsurance on $5,000 total spending ($750 out of pocket). Which
elasticity should be used if estimating the impact of moving to a 40% coinsurance
plan? An easticity of -0.22 would predict total spending at $4,097, using Eq. (7).
If an elasticity of -0.17 were used, total spending in the new plan would be estimated
at $4,284, nearly 5% higher. Thus, even the most fastidious anal ysts can reasonably
use different elasticities and come up with different results on that basis alone.

Predicting Quantity with Point-elasticity and Arc-elasticity
Formulas. Earlier inthisreport, it was noted that “when predicting quantity using
elasticities, it is critical to use the Q, formula that corresponds with the elasticity
used, whether arc or point.” This point merits repeating in the context of the HIE
results because arc-elasticity factors are so often applied in the point-elasticity
formulafor predicting quantity. That is, arc-elasticity factors like thosein Table 2
are often applied in Eqg. (6) instead of the more appropriate Eq. (7).

Based on the total medical elasticitiesin Table 2, Table 3 shows the results if
one wereto use those el asticities to estimate free-plan spending from the other three
coinsurancerates. Specifically, for each row in Table 3, the appropriate elasticity is
taken from thefirst threerowsof Table 2. Sincethe purpose of the calculationisto
estimate free-plan spending, the result should be 100%. Because the arc-elasticity
formulais rarely written in terms of Q,, arc elasticities are often applied using the
point-elasticity formulain Eq. (6). Those results are shown in Column A of Table
3 and do not yield the target amount of 100% shown in Column C. Column B shows
the results of using the arc elasticities with the formulafor Q; from Eq. (7), which
yields the targeted results. Eq. (23) illustrates how these results were calculated,
applying the 0%-95% el asti city to the point-el asticity formula; Eq. (24) doesthesame
but applies the elasticity in the arc-elasticity formula. Theresultsin Table 3 again
illustrate why arc elasticities should not predict quantity using the point-elasticity
formula. Although the arc-elasticity formula for predicting quantity is more
complicated than the point-elasticity one, it is the correct one.

(23)
Q,=Q, (1- E), whereEq. (6) is reduced because p,=0
=55% (1 + 0.29) = 71%

(24)

Q. =-Qy(E-1)/(E+1),whereEq. (7) isreduced because p,=0
- 55% (-0.29 - 1) / (-0.29 + 1) = -55% (-1.29)/(0.71)

100%

¥ Thevariation in this column tendsto be smaller than that in the service-specific columns.
The total medical elasticities reflect the combination of outpatient and inpatient spending
and therefore have the result of tempering the differencesin those elasticities.
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Table 3. Predicted Free-Plan Spending Using Arc Elasticities,
by Elasticity Formula for Predicted Spending

A B C
Applying point- Applying ar c-
Beginning elasticity formula = elasticity formula | Target amount for
Coinsurance (p))  for total spending | for total spending total spending
25% 83% 100% 100%
50% 7% 100% 100%
95% 71% 100% 100%

Source: Congressional Research Service (CRS) calculations, using arc elasticitiesfrom Table 2 and

guantities from Table 1.

Figure 6. Analysis of Arc Elasticity’s Lack of Path Neutrality in HIE
Results: Predicting Quantity Varying By Beginning HIE Data Point
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Effect of Arc Elasticity’s Lack of Path Neutrality. As previously
mentioned, the arc-elasticity formula for predicting quantity is not path neutral —
that is, when using a factor’'s particular value (based on two data points), the
predicted quantity for agiven price will vary depending on which point is chosen as
thestart (p,, Q). UsingtheHIE datapointsas(p,, Q,) and theappropriateelasticities
between consecutive points yields the two curvesin Figure 6.

The dashed line in the figure is predicted quantity based on the higher of two
consecutive HIE data points. For example, if predicting quantity at a coinsurance
price of 70%, thisis between the HIE data points of (50%, 63%) and (95%, 55%),
where the arc elasticity for total medical care is-0.22.* Using Eq. (7) and (50%,
63%) as (py, Qo) predicts a quantity of 58.6%. Using the same equation but the
beginning point of (95%, 55%) predicts a quantity of 58.8%. Thisis arelatively
small difference. In fact, over the domain of 25% to 95%, the difference in the
predicted quantities, varying which pair of consecutive pointsis chosen as (p,, Q).
averages about two-tenths of one percent.?* Thisis shown graphically in Figure 6
by the nearly imperceptible difference between the lines over the 25% to 95%
domain.

Figure6 alsoillustrates a serious limitation of predicting quantity using an arc
elasticity when the priceis zero (that is, free), as was the case in the RAND Health
Insurance Experiment. Applying the free-plan datafrom Table 2 to predict quantity
between a price of 0% and 25% coinsurance causes Eg. (7) to be reduced asfollows:

(25)
Q1 = Qu(Epo - Ep; - P; - Po) / (EPs- Epg Pi- Po), Where pe=0 and Q=1
= (- Epy - p) / (Epy- p)

1+ E
= E’ where E =-0.17

=71%

The constant predicted quantity of 71% is shown by the horizontal solid line
over the 0% to 25% domainin Figur e 6 for the predicted quantity based on thelower
p,- Using a constant arc elasticity to predict quantity where price (either p, or p,) is
zero yields a constant quantity across the domain of prices. Thisisunacceptablefor
the present structure of the CRS/Hay models, which derive their results from a
baseline of free-plan values.?? Even analysts not predicting free-plan values must
cope with thisissue where a person’ s average coinsurance is 0%.

2 |n predicting quantity, the unrounded el asticity was used.

2 This is determined by calculating the percentage difference in the integrals of Eq. (7)
alternating the consecutive pairs of HIE points for the beginning point:

| Qo(Epo - Epy - p1 - Po) / (EPy- Epo- pi- Po) dpy

where E, Q, and p, are constants based on the HIE data, over the domain between the two
HIE data points.

22t is not possible to apply the point-elasticity formula for total spending because p,=0,
making Eq. (6) undefined. It isalso not advisable to use, for example, (1%, 99%) instead
of (0%, 100%) because the shape of the resulting curveis not intuitive.
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It wasillustrated in Figur e 2 that using a(p,, Q,) that was not one of the original
datapointscreated aseparate arc that did not line up with either of those based on the
original data points. Thisis another potential area of concern for applying the arc
elasticities. However, this appears to be less of apractical concern when using arc
elasticitiesderived fromthe HIE results. Thedashedlinein Figure7isthesameone
in Figure 6. The difference between thefiguresisthat in Figure 7 the solid lineis
based on the (p,, Q,) points shown in the figure, which are on the dashed line.

Figure 7. lllustration of Arc Elasticity’s Lack of Path Neutrality:
Predicting Quantity Varying Whether Beginning Data Point Was an
Original HIE Point
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Source: Congressional Research Service (CRS) analysis.

Note: Dashed line from Figure 6, based on moving from higher original HIE data points to
consecutively lower ones. Solid line predicted using arc-elasticity formulas and based on (p,, Q)
points on the dashed line.

The biggest differences between the curves occur when price p, islessthan the
13% used for p,. The smaller the coinsurance, the larger the difference. From a
beginning point of (13%, 79%), thefree-plan valueispredicted at 111% of the actual
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HIE free-plan value. Over the domain from 13% to 95%, the largest difference
between the curves is two-tenths of one percentage point. Thus, even when the
beginning data point is not one of the original points used to calcul ate the elasticity,
applying the arc elasticity to predict HIE results yields relatively consistent results,
except when predicting based on small coinsurance rates. In other words, even
though arc elasticitiesare generally not path neutral, their application for HIE results
produces curves that appear relatively path neutral, except at smaller coinsurance
levels. Except when dealing with free-plan levels, arc elasticities appear useful in
reasonably replicating HIE results.

Induction Factors

Table 4 displays the induction factors calculated according to Eq. (14) and
based on the coinsurance (p, and p,) and spending levels (Q,and Q,) in Table 1. As
previously mentioned, the value of an induction factor is the percentage of the
differenceintwo plans’ out-of-pocket paymentsthat directly affectstotal health care
spending. Table4 expressesthese percentagesasdecimals(for example, 1.16 rather
than 116%). Asin Table 2, which showsthe arc elasticities, the first three rows of
Table4 show thefactorswhen compared to the free plan. The next three display the
factors between consecutive coinsurance rates. The last row shows the factors
between 25% and 95% coinsurance. As previously discussed, induction factors are
not reversible — their value depends on which of the two data points in the
calculation is chosen as the starting point (p,, Q,). Asaresult, for each pair of HIE
coinsurancerates, there aretwo induction factors— one using the lower coinsurance
as p, and one using the higher coinsurance as p,.

Table 4. Induction Factors Between Average Coinsurance
Amounts, By Type of Service

Average | Lower coinsuranceasstarting point | Higher coinsurance as starting point
coinsurance Total Total
range |Outpatient Inpatient medical |Dental |Outpatient Inpatient medical [ Dental
0% - 25% 1.16 1.16 116 | 0.84 1.63 1.63 1.63 1.06
0% - 50% 0.84 0.64 0.74 | 0.64 1.45 0.94 117 0.94
0% - 95% 0.54 0.42 047 | 053 1.10 0.70 0.86 1.05
0% - 25% 1.16 1.16 116 | 0.84 1.63 1.63 1.63 1.06
25% - 50% 0.73 0.17 045 | 0.56 0.90 0.18 0.51 0.65
50% - 95% 0.34 0.26 028 | 0.59 0.41 0.30 0.32 0.80
25% - 95% 0.44 0.22 032 | 052 0.64 0.26 0.42 0.83

Sour ce: Congressional Research Service (CRS) calculationson datain Table 1, whichisfrom Table
4.17, Joseph P. Newhouse et a., Freefor All? Lessons fromthe RAND Health Insurance Experiment
(Cambridge, Massachusetts: Harvard University Press, 1993).

Predicting Quantity with Induction Formulas. Inductionfactorsarepath
neutral (that is, they consistently predict quantity, using Eg. (13)) when thefollowing
conditions hold:

¢ the beginning point (p,, Q,) is one of the origina data points that
was used in calculating the induction factor;
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¢ the induction factor was calculated based on that (p,, Q,) as the
starting point; and

e the price in the other original data point on which the induction
factor was based (p,, Q,) has the same relationship to starting point
(Poy Qo) as does the price being used to predict quantity (that is, the
p, used to calculate the induction factor and the price for which
guantity isbeing predicted are both greater than or are both lessthan

Po)-

Figur e 8 shows the results when abiding by these conditions for total medical
(solid line) and inpatient care (dashed ling). They are ssmply line segments drawn
between the original data pointsin Table 1.

Figure 8. Predicting Quantity Using Induction Factors and Original
Data Points from HIE
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Figure 9. Predicting Quantity of Inpatient Care, By Induction Factor
and Beginning HIE Data Point
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Source: Congressional Research Service (CRS) analysis.

Note: Thelinesare predicted by applying theinduction factorsand the HI E price-quantity datapoints
to the appropriate formula (Eq. (13)), where p, is the average coinsurance along the x-axis and the
percentage of free-plan spending is predicted by the formula and graphed against the y-axis.

The induction factors in the CRS/Hay models, however, do not vary by
coinsurance. For eachtypeof care, theinduction factorsare held constant acrossthe
domain of coinsurance levels. The CRS/Hay models use the induction factors most
commonly cited: 0.3for inpatient hospitalization, 1.0 for prescription drugs, and 0.7
for all other medical care.® Using the original HIE data points as the starting points
(Po» Qo), Figure 9 shows the predicted quantity of inpatient care using a constant
induction factor of 0.3. Thethin lineis predicted quantity based on the lower HIE

2 See, for example, Tablell-2A in Edwin Hustead, et al., “Medical Savings Accounts: Cost
Implications and Design Issues,” American Academy of Actuaries Public Policy
Monograph No. 1, May 1995, at [http://www.actuary.org/pdf/health/msa_cost.pdf].
(Hereafter cited as Hustead, et a., Medical Savings Accounts. Cost Implications.)
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coinsurance between two points; the heavier solid line is based on the higher HIE
coinsurance. The dashed lineisthe sameasin Figure 8.

When using the 0.3 induction factor, the lines that result in Figure 9 have
relatively constant slopes (not counting the graph’s vertical lines that link the line
segments). Solving Eq. (21) for the slope and holding the induction factor | constant
illustrates why the slope is relatively flat and constant. Based on the four original
HIE data points (for Q,) and a constant induction factor of 0.3, the slope of the
resulting two linesis between -0.18 and -0.30. Thisis consistent with the slope of
the line segments between the HIE data points where the coinsurance is not zero.
However, between the HIE data points of (0%, 100%) and (25%, 71%), the lopeis
-1.16. Asaresult, the two lines based on the 0.3 induction factor vary substantially
from the line based on the HIE data points, although each of the two lines based on
the 0.3 induction factor passesthrough one original HIE point — the one that served
as (po, Qp) intheformulafor predicting quantity.

Figure 10. Comparison of Results of Constant Induction Factor from Free-
Plan Spending with Induction Factors and Original Data Points from HIE
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Source: Congressional Research Service (CRS) analysis.
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Therearetwo linespredicted from the origina HIE pointsand the 0.3 induction
factor because the use of a constant induction factor effectively assumes the factor
isreversible. Of coursg, itisnot reversible, asillustrated by thetwo linesthat emerge
between two data points when holding the induction factor constant.

Thedissimilarity betweentheslopesof thelinesbased onthe HIE factorsversus
the 0.3 factor causes particular concern for the CRS/Hay models, which produce
results based on cost-sharing additions to a free plan. Along with the same dashed
line in the previous two graphs based on the HIE data, Figure 10 shows predicted
inpatient care from a constant 0.3 induction factor and from the free-plan spending
data point of (0%, 100%). Where average coinsurance is 25%, the difference
between the two lines is greatest: The predicted quantity of inpatient care is 30%
higher than the HIE results. These results suggest that, if induction factorsareto be
used, they should not be constant against the entire domain of cost-sharing.

Cubic Formula

Both arc el asticities and induction factors have limitations when trying to apply
them to replicate HIE results. These limitations are severe when doing analyses
based on free-plan levels, asillustrated in Figur e 6, or when using a constant factor
for all levels of cost-sharing, asin Figure 10. This has huge implications for the
CRS/Hay models because they are built on a base dataset that represents free-plan
spending and uses constant factorsregardl ess of cost-sharing. Thesefindingssuggest
the need for another method to estimate the impact of cost-sharing on demand for
health care.

Some other method that yiel dsbetter model resultsmay |ack otherwisedesirable
characteristics not critical in modeling. For example, an arc elasticity has
applicationsfor analyzing all kindsof goodsand services. It producesastandardized
value for comparing people’s price sensitivity for all kinds of goods and services.
Standardization is obtained by taking the slope of the line (or of the demand curve)
and applying the original or average price and quantity combinations so that the units
are no longer a part of the factor, as demonstrated in Eq. (19) and Eqg. (20). For
modeling purposes, however, such standardizationisnot only unnecessary but isalso
problematic in that it leads to the problems observed in Figure 6. A better method
for replicating the HIE results may not ultimately produce factors that are
standardized for comparing other goodsand services. Itismoreimportant, however,
that the method produce values that are reversible, path neutral and consistent with
the HIE results.

TheHIE resultsof interest for our modeling purposesarethefour price-quantity
data points, in terms of average coinsurance and percentage of free-plan spending:
(0%, 100%), (25%, 71%), (50%, 63%), and (95%, 55%). With only four points, a
cubic formula can be calculated using least squares fit, which will create a curve
passing through all four HIE points. For the remainder of thisreport, thisformulais
referred to as “the cubic formula,” where Q is the percentage of free-plan spending
predicted from a particular average coinsurance, p:

(26) Q =-1.5546p° + 2.8459p - 1.7743p + 1
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Figure 11 showstheresults of thisformulaasaheavy line, along with theidea
arc-elasticity and induction results presented earlier. Thedashed lineisbased onthe
arc elagticities, and the lighter solid lineis based on the induction factors. All three
arefor total medical care.

Figure 11. Predicting Quantity Using Cubic Formula, Compared to Ideal
Arc Elasticities and Induction Factors, From Original HIE Data Points
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Source: Congressional Research Service (CRS) analysis.

Note: The arc-elasticity curve is the same as the dashed line in Figure 6, which predicts quantity
based on the higher of consecutive original HIE points as (p,, Q,) and using the unique arc elasticity
between each pair of points, asshownin Table 2. Theinduction-factor curveisthe same asthe solid
linein Figur e 8, which predicts quantity based on the higher of consecutive original HIE pointsas (p,,
Q,) and using the unique induction factor between each pair of points and for moving from higher to
lower cost-sharing, asshownin Table4. Whilethese aretheideal scenariosfor the arc-elasticity and
induction-factor curves, the cubic formula always yields the same results, without needing a (p,, Q,)
and regardless of whether one is moving from higher or lower cost-sharing.

The cubic formula has several improvements over the other methods. For
example, because (p,, Q,) isnot part of theformula(sincetheoriginal HIE pointsare
inherent inthe cubic formula), path neutrality and reversibility are not concerns. The
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quantity predicted based on aparticular pricewill always bethe same using the cubic
formula. Moreover, calculating the slope (that is, change in quantity / change in
price) at any point along the curve is quite simple, using the derivative of Q with
respect to p:#*

(27) dlopeof Q at agiven coinsurance (p) = Q' (p) = -4.6638p? + 5.6918p - 1.7743

A potential concern one might note in Figure 11 isthe difference between the
cubic formula and the other two curves between 50% and 95% coinsurance.
Although the arc-elasticity and induction curves are close to one another in this
domain, the cubic-formula curve appears much higher. The difference between the
cubic-formula curve and the induction curve is 3.1%.” Between 0% and 50%
coinsurance, the cubic-formulacurveislower than theinduction-factor line segments
so that, overall, the area under both curvesis nearly identical — 64.6% and 64.7%
respectively.?® The areaunder the arc-€lasticity curvesis 63.3%, approximately 2%
less than the area under the other two curves.?” Because the HIE data provided only
four data points, it is not known which of the three curves best reflects theimpact of
cost-sharing between those points. Considering this as well as the relatively small
overal differences between the curves, the shape of the curves should not be an
overriding criterion in determining which method to use.

Estimating Free-Plan Spending

Aspresented here, each of the methodstake a particul ar average coinsuranceto
predict the percentage of free-plan spending associated with that coinsurance. This
section discusses how these results would be applied to create free-plan spending
levels, such as those used in the CRS/Hay models, and how their results vary.

Theexamplecaseisapersonwho wasenrolledinahigh-deductible health plan.
Thedeductiblewas $1,000, after which a25% coinsurance applied. During theyear,
the person had total medical expenses of $1,500. Of this total, the person paid
$1,125, or 75%. If this person had been in afree plan, her spending would likely
have been more than $1,500.

4 The slope of the demand curve would be the reciprocal of Eq. (27).

% Thisisdetermined by cal cul ating the percentage differencein theintegral of Eq. (26) and
the area under the straight line created by the ideal induction-factor results:

1- [(-1.5546p° + 2.8459p” - 1.7743p + 1 )dp / [(95%0-45%0)(55% + ¥2 (63% - 55%))]
where p ranges from 50% to 95%.

% These numbers were calculated as in Footnote 24, using the integral of Eq. (26) for the
cubic formula and the area under the straight lines for the induction factors.

2" The area under the arc-€lasticity curves was obtained by integrating Eq. (7) between
consecutive pairs of HIE points, using the higher coinsurance of each pair as py:

| Qo(Epo - Epy - p1 - Po) / (EPy- Epo- pi- Po) dpy

where E, Q, and p, are constants based on the HIE data, over the domain between the two
HIE data points.

% The assumption for all of these examples is that all expenses are covered medical
expenses.
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Tocalculatefree-plan spending using thearc-el asticity formul as, theappropriate
elasticity for total medical spending is needed from Table 2. Because the intent is
to predict free-plan spending (that is, p,=0), one of the values in the calculation
should be based on a coinsurance of zero, asin thefirst threerows of Table2. The
other value relevant for choosing the appropriate elasticity is the other coinsurance
of 75%. Inthetable, the nearest coinsuranceratesto 75% are 50% (with an el asticity
of -0.23) and 95% (with an elasticity of -0.29). Based on its distance between 50%
and 95% coinsurance, the 75% coinsurance is estimated through simple imputation
to have an elasticity of -0.26333.%° The (p,, Q,) to be applied in Eq. (7) isthe (75%,
$1,500) given in the example, predicting free-plan spending as follows:

(28)
Q1 = Qu(Epo - EP; - P; - Po) / (EPs- EPg- Pi- Po), Where p,=0
= Qu(EPo - Po) / (-EPg- Po)

1-E
= , Where E =-0.26333

1+ E
= $1,500 (1+0.26333) / (1-0.26333)
=$2,572

As shown in Eq. (28), predicting free-plan spending — that is, predicting Q,
where p,=0 — causes p, to cancel out of theformula. Thus, the elasticity isthe only
variable remaining that reflects the original plan’s 75% coinsurance. As aresult,
when dealing with free-plan information, constant results can be avoided only by
calculating preciseelasticity values. Theresultsare quite sensitiveto thevalueof the
elasticity. An arc elasticity of -0.23 would have yielded free-plan spending of
$2,396. Anarc elasticity of -0.29 would have yielded free-plan spending of $2,725.

When dealing with afree plan, theuse of acontinuousarc elasticitiesisrequired
to predict spending that is not constant over agiven domain. In other words, thearc
elasticity must be used to create unique elasticities at each given point, like a point
elasticity. Obvioudly, thisisnot therole of the arc elasticity. The approach applied
in Eg. (28) to work around the factor’ s limitation when dealing with afree plan is
arguably a misuse of its factors. Thus, when applying arc elasticities to free-plan
information, an analyst must choose between possibly misusing the factors or
predicting constant spending regardless of cost-sharing. Neither is desirable.

In applying the induction-factor formulas, not only should the factor be chosen
from the first three rows of Table 4 but should aso be taken from the penultimate
column, for “higher coinsurance as starting point.” This matters because induction
factorsare not reversible. Aswith the elasticities, there are two induction factorsto
choose between — 1.17 (based on coinsurance from 0% to 50%) or 0.86 (based on
coinsurancefrom 0% to 95%). These constant factorswould predict unique amounts
of spending for every coinsurance in the domain, unlike elasticities. As aresult,

# Calculated as-0.23-[(75%-50%)/(95%-50%)* (0.29-0.23)]. Also, Figure 7 showed little
difference in the results when the starting point for predicting quantity was not one of the
original HIE points. However, those results were calculated between consecutive HIE
points with the corresponding elasticity. In this example, there is greater variation due to
the larger coinsurance domain used.
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calculating an induction factor for agiven coinsuranceisnot as crucial, but doing so
produces continuous factors that seem more accurate than the factors at 50% and
95%. Based onitsdistance between 50% and 95% coinsurance, the 75% coinsurance
is estimated to have an induction factor of 0.9978. The free-plan spending level is
then calculated using both Eq. (11) and Eq. (13) respectively below:

(29)

Q= Qy+ 1 (OOP, - OOPy.)
= $1,500 + 0.9978 ($1,125 - $0)
= $2,623

(30)

Q1= Qo (1+ 1(po - P1)
= $1,500 (1 + 0.9978 (75%-0%))
=$2,623

Thisis 2% higher than the comparable arc-elasticity amount. Theseresultsare
also sengitive to the value of the factor. An induction factor of 0.86 would have
yielded free-plan spending of $2,468. An induction factor of 1.17 would have
yielded free-plan spending of $2,816.

Applying the cubic formulato the same exampleismore straightforward in that
thereareno factorsto decideamong. Thus, thefree-plan spendinglevel iscalculated
by applying the price of 75% coinsurance as follows:

Q = -1.5546p° + 2.8450p? - 1.7743p + 1
= -1.5546(75%)® + 2.8459(75%)? - 1.7743(75%) + 1

In other words, the cubic formulaestimates that an average coinsurance of 75%
yields a quantity that is 61.4% of free-plan spending. Thus, the $1,500 in total
spending is 61.4% of free-plan spending, and this free-plan spending results:

(32)
$1,500 / 61.4% = $2,442

Although there is a range of possible results from the other two methods, the
cubicformulaproducesasingleresult. That resultis5% |lower thanthearc-elasticity
result in EQ. (28) and 7% lower than the induction-factor result in Eq. (30).

Predicting Spending From Estimated Free-Plan Spending

Pure Coinsurance Plan. Based on the free-plan spending estimates above,
one can predict spending in a plan with nominal coinsurance of 75% and no
deductible or out-of-pocket maximum. In this case, of course, the nominal
coinsurance al so serves asthe average coinsurance. A priori, one might expect total
spending to be predicted at $1,500 because the average coinsurance of 75%, as
before. Once more, the arc elasticity of -0.26333 is used in Eqg. (7), with p,=0%,
Q,=%2,572 and p,=75%:
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(33)
Q. = Qu(Epy - Ep; - Py - Po) / (EPy- EPy- P1- Po), Where p,=0
=Qy, (- Ep; - p) / (Ep;- p,), Where p, cancels out
= Q, (1+E) / (1-E)
=$2,572 (1 - 0.26333) / (1 + 0.26333)
=$1,500

As illustrated in Figure 6, using constant arc elasticities to predict spending
from free-plan values (that is, p,=0) also yields a constant value. The arc-elasticity
formula causes spending to be predicted based solely on the value of the elasticity,
with its impact on the free-plan spending of $2,572. Calculating continuous
elasticities is not only problematic, as was mentioned before, but it is aso
complicated, requiring one to add a methodology to a methodology.*

Predicting spending from the estimated free-plan level using the induction
factorsrequires choosing adifferent induction factor than was used in estimating the
free-plan value, even though the analysisisof the same coinsuranceamounts. A new
factor must be chosen because induction factors are not reversible and, in this case,
the analysis is of moving from no cost-sharing to substantial cost-sharing of 75%
rather than vice versa. The applicable induction factors from Table 4 are 0.47 and
0.74. For thisexample, theinduction factor is calculated as0.59 and isapplied in Eq.
(13) asfollows, with p,=0%, Q,=$2,623, and p,=75%:

(34)

Q1= Qo (1+ 1(po - P1)
= $2,623 (1 + 0.59(0%-75%))
= $1,462

Thisresultisapproximately 2.5%lessthan the $1,500 total spending that should
have been produced, in spite of the precise calculation of the induction factor. The
difference is due to induction factors lack of path neutrality and the issues
surrounding the calculation of the induction factor itself. An induction factor of
0.571 would have predicted quantity of $1,500.

The cubic formula produces the percentage of free-plan spending from the
coinsurance. Eq. (31) already predicted that a 75% coinsurance yields quantity that
iS61.4% of free-plan spending. Sincethisledto afree-plan value of $2,442 (shown
in Eq. (32)), the predicted spending in a 75% coinsurance plan would be calculated
as $2,442 * 61.4% = $1,500. Thisis not surprising considering that the $2,442 was
calculated as$1,500/ 61.4%, so $1,500 emerges by necessity when multiplying it by
61.4%. This demonstrates the cubic formula s path neutrality.

Typical Plan Structure. Pure coinsurance plans are virtually nonexistent.
Today's health insurance plans have not only coinsurance but copayments,
deductibles and out-of-pocket maximums. This example illustrates how the

% There is an interesting byproduct of the price levels faling out of the arc-elasticity
formula when dealing with a free plan. The arc elasticities become path neutral, as
demonstrated in this example by the predicted spending of $1,500 emerging by identity.
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estimated free-plan spending can be used to predict spending for the same personin
aplan with adeductible of $500 followed by coinsurance of 62.5%, with an out-of-
pocket maximum of $2,000. Although not a pure coinsurance plan, this plan would
also have 75% average coinsurance at $1,500 total spending. Thus, assuming
average coinsurance is an accurate predictor of total spending, one might expect the
methodsto predict $1,500 of total spending from the free-plan level for this person.

In this instance,$1,500 may be the desired total spending under the new plan.
However, the only information that would be known in the CRS/Hay models is the
free-plan spending for this person. Because applying the elasticities to predict
spending requires an average coinsurance, the only information for calculating this
is the free-plan spending level of $2,572. In other words, calculating the average
coinsurance of a plan that does not have pure coinsurance requires using the given
spending level asthebasis. Inthisexample, thefirst step would be to calculate out-
of-pocket spending under the new plan given total spending of $2,572. Thisisthe
same calculation that would be done for the induction-factor formula, as follows:

(35)
OOP,. =500 + 62.5% (2,572-500) = 1,795

The average coinsurance based on free-plan spending (Q,) would then be as
follows, requiring the introduction of anew variable (p,.):

(36)
P, = OOP,. / Q, = 1,795/ 2,572 = 69.8%

Theactual average coinsurancewill likely bedifferent once quantity isadjusted
downward because of the cost-sharing. Nevertheless, in lieu of any other known
number, one must then decide which elasticity to use based on Table 2. Again,
because calculating the elasticity is critical when dealing with afree plan, a precise
elasticity is used, -0.25639, based on the average coinsurance. This produces total
spending of $1,523, approximately 1.5% higher than $1,500:

(37)

Q1 = Qu(Epy - EPy- - P - Po) / (EPy- EPy- Pre- Po), Where p,=0
Q, (1+E) / (1-E)

$2,572 (1 - 0.25639) / (1 + 0.25639)

=$1,523

Using induction factors to predict spending is relatively straightforward using
Eq. (11), since it uses OOP,. , athough its value differs from the one calculated in
Eqg. (35) because the free-plan spending estimated from the induction factorsin Eq.
(29) isdifferent than the free-plan spending based on the el asticities, asshown in Eq.
(28). Theinduction factor’s free-plan spending of $2,623 for this person produces
the following:

(38)
Q,=Q, +1(OOR, - OOP,.)
= $2,623 + | ($0 - $1,827)
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Thechallengeisdeciding thevalueof theinductionfactor, I. Again, theaverage
coinsurance will likely be different once quantity is adjusted downward because of
the cost-sharing, but in lieu of any other known number, one must use p;. to choose
aninductionfactor based on Table4. (The CRS/Hay models, and most other models
using induction factors for modeling purposes, use constant induction factors
regardless of cost-sharing level, already shown to be problematic.) The average
coinsurance (p,.) based on the free-plan spending in the new plan would be
approximately 69.6%. Based on where 69.6% falls between 50% and 95%
coinsurance, theinduction factor isestimated at 0.6221. Pluggingthisvalueinto Eq.
(38) then yields $1,486, which is 1% smaller than the $1,500 expected a priori.

Alternatively, predicting quantity by directly applying the 69.6% average
coinsurance in the induction-factor formula (based on Eq. (13)) based on free-plan
spending also yields $1,486:

(39)

Q1 = Qo (1+ 1(po - P1+)), where p;. = OOP,. /Q,
= $2,623 (1+0.6221(0%-69.6%))
= $1,486

Thisshould not be surprising, since setting thefirst linein Eq. (38) equal to the
first linein Eq. (39) yields an identity:

(40)

Q, + 1 (OOPR, - OOP,.) = Q, (1+ I(p, - pP1+)), Where p,= OOPR, /Q, and p,. = OOP,./Q,
Q, + 1 (OOP, - OOP,. )= Q, (1+ I (OOPR, /Q, - OOP,./Q,))

Q, + 1 (OOP, - OOP..)=Q, + | (OOP, - OOP,.)

Thus, when using induction factors, the average coinsurance derived from
applying a plan structure to a given price-quantity combination yields the same
results as using the nominal out-of -pocket dollar amounts. One of the most common
arguments for using induction factorsis that it enables one to handle complex plan
designs by virtue of the nomina out-of-pocket amounts. In actuality, its
methodology is no different than using the average coinsurance. As aresult, the
limitations of the arc elasticity from cal cul ating the average coinsurancein atypical
plan structure are the same limitations faced by the induction-factor formulas. This
point is typically obscured, however, because the induction factors rely on the
nominal dollar amounts.

Aswith arc elasticities and induction factors, the cubic formula aso relies on
the average coinsurance of the new plan calculated from the spending levels of the
old plan (Q,). Applying the cubic formula’s average coinsurance of approximately
70.2%, based on its free-plan spending level, produces the following:

(41)
Q =-1.5546p° + 2.8459p - 1.7743p + 1, where p=70.2%
=61.9%

Applying this percentage-of-free-plan spending to the free-plan spending of
$2,442 (from Eq. (32)) yields $1,512, not quite 1% higher than $1,500.
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Using the same approaches to predict spending in the original plan, which had
a $1,000 deductible and 25% coinsurance, based on the free-plan spending levels
shown in Egs. (28-32) yields the values shown in Table 5. The target amount is
$1,500. Once again, the cubic formulaproducesresults closest to the target amount.
To re-emphasize the point, the induction-formula results were calculated using the
first line of both EQ. (38) and Eq. (39). As expected, the results were identical.

Although induction factors are not reversible, this added complication was
previously justified by thefactors' capacity to predict spending based onanew plan’s
cost-sharing structure as applied to the original plan’s spending. The arc-elasticity
and cubic formulaswork best when the new planisonly pure coinsurance. Any other
plan structure forces oneto resort to cal cul ating an average coinsurance based on the
original plan’sspending level, which introduces someerror. However, it was shown
above that theinduction factor’ s methodology is no different than using the average
coinsurance calculated fromthe original plan’ s spending level, introducing the same
kind of error. Thisseemsto nullify the casefor tolerating theinduction factors' lack
of reversibility and the concomitant complexity. Moreover, the induction-factor
methodology is the only one of the three that does not replicate a plan’s original
spending level when modeling a pure-coinsurance plan, asshownin Eq. (34). This
is because the induction-factor results are based on p,. even when p, is known.

Table 5. Predicted Spending of Example Person in Plan With
$1,000 Deductible and 25% Coinsurance, Based on Predicted
Free-Plan Spending, By Cost-Sharing Method

Arc elasticity | Induction factor | Cubic formula | Target amount

Average 54.2% 53.6% 55.7%
coinsurance (p;-)
Value of factor -0.23554 0.7184 Not applicable
Predicted

X $1,592 $1,613 $1,529 $1,500
spending (Q,)
Difference from 6.1% 7 5% 1.9%
tar get amount

Source: Congressional Research Service (CRS) calculations.

Notes. Average coinsuranceis based on applying the plan design to the predicted free-plan spending
for each factor, shownin Egs. (28-32). The*“vaueof factor” for the arc elasticity and induction factor
iscalculated fromthevaluesin Table 2 and Table 4, based on thelocation of the average coinsurance
between 50% and 95% coinsurance. The cubic formularequires no factor. “Predicted spending” is
based on the calculated “value of factor.” If the given values from Table 2 and Table 4 were used
instead of the calculated values, the “difference from target amount” would be -5.6% or 7.4% for
elagticities and, for induction factors, 5.5% or 30.8%. All exceed the cubic formula s difference.

The quantity predicted by the cubic formula was closer to the desired amount
than the quantity predicted by the other methods. Thisis even after taking extreme
careto calculate seemingly the best possible valuesfor the induction factors and arc
elasticities. If such careisnot taken (that is, if constant factors are used across cost-
sharing levels), then the cubic formula would certainly produce results more
consistent with the HIE. Not having to calculate valuesfor afactor makesthe cubic
formula preferable from a practical standpoint as well.
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Predicting Spending by Type of Care

Most of the preceding discussion hasfocused on how the methodol ogies can be
used to predict total medical care spending. One might expect, however, that the
effect of cost-sharing will vary depending on thetype of service— whether inpatient
or outpatient, for example. One of the most interesting HIE resultsis that spending
inthe 25% plan averaged 71% of free-plan spending for both outpatient and i npatient
care, asshowninTablelandillustrated in Figure 12. Because of thisconcordance,
the corresponding arc elasticities (T able 2) and induction factors (T able 4) do not
vary by type of care between 0% and 25% coinsurance. Between 25% and 95%
coinsurance, spending does differ by type of care, as do the factors.

Figure 12. Effect of Average Coinsurance on Spending, by Type of
Service
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Constant Induction Factors. Although the CRS/Hay models do not vary
the induction factors by cost-sharing levels, the factors do vary by type of service:
0.3 for inpatient hospitalization, 1.0 for prescription drugs, and 0.7 for all other
care.* Aswasillustrated in Figure 10, these values predict spending levelsthat do
not always line up well with the HIE. It isarguable that medical care has changed
so that the constant factors are morein line with current utilization patterns than the
HIE results. However, that is not the argument made. These constant factors*were
based largely on the RAND study.”* It is difficult to determine how these constant
factors were obtained from the range of HIE-based induction factorsin Table 4.

A decade ago, ateam of actuariesreexamined these constant factors, since“the
management, delivery, and mix of health care services have changed dramatically
since the study was performed.” Some of the workgroup members thought the
factors should be higher, while othersthought they should be lower. Ultimately they
decided to leave the constants unchanged but noted that “(o)ne set of factorsis not
appropriate for all uses. The factors used should be carefully considered in the
context of the specific situation.”** The induction factors currently used in the
CRS/Hay models still have these values.

Inpatient and Outpatient Care. For practical modeling purposes, one must
consider whether the differences in the HIE results by type of care would
substantially affect model results. If not, it is probably not worth varying the factors
by type of care. Again, between 0% and 25% coinsurance, there is no difference
between inpatient and outpatient care whatsoever, in terms of percent of free-plan
spending. The largest difference is at 95% coinsurance. Differences at the 95%
coinsurance are compared in this section.

From the example person above, a 95% pure-coinsurance plan predicted from
free-plan levels would produce total medical spending shown in the gray column of
numbersin Table 6. The table also shows what spending would be predicted if all
spending had been either outpatient or inpatient care, and varying the factors
accordingly. Thetable also showsthe results for dental care.

Table 6. Example Person’s Predicted Spending at 95%
Coinsurance, by Type of Service and Factor

Factor Outpatient I npatient Total medical Dental
Elasticity $1,267 $1,543 $1,416 $1,296
Induction $1,277 $1,576 $1,452 $1,302
Cubic formula $1,196 $1,465 $1,343 $1,221

Source: Congressional Research Service (CRS) calculations.

Note: “Total medical” excludes dental.

% These factors are used to calculate a weighted induction factor for each person in the
models, based on their health care utilization by type of care.

¥ Hustead, et a., Medical Savings Accounts: Cost Implications, p. 4.
3 1bid.
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Although this section focuses on variation by type of service, the differences
inthetotal medical column merit somediscussion, evenif it issomewhat repetitive.
First, these amounts are based on the predicted free-plan values, which were based
on the total spending of $1,500 in the origina plan with an average coinsurance of
75%. The three approaches produced different free-plan values. Applying the
factors to the estimated free-plan spending to a 95% coinsurance should yield total
medical spending that is 55.0% of the free-plan spending. This was so for the
elasticity and cubic formulas; for theinductionformul a, it was55.4%. Thus, thebulk
of the difference among thefactorswasdueto the differencein creating thefree-plan
values. As mentioned in that section, the results from the arc elasticities and the
induction factors vary widely depending on the values chosen for the factors.
Moreover, asillustratedin Figure 11, the methods’ functionsyield dissimilar results
between the HIE coinsurance levels, and which one is superior is not known.

The cubic formula does not require the calculation of factors when predicting
guantity. Becauseit does not havefactorsof itsown, predicting spending by various
types of care requires estimating new formulas. For each type of care, a different
cubic formula must be estimated to be consistent with the HIE results. Thisis one
practical limitation compared to elasticities and induction, which use the same
formulas but different factors for different types of care. For inpatient care, the
formulaisestimated as Q = -2.2764p* + 3.7873p* - 1.9645p + 1. For outpatient care,
itisQ =-0.8662p° + 1.9296p* - 1.5883p + 1. For dental care, it is Q = -0.782p° +
1.3865p” - 1.1377p + 1. For inpatient care in particular, the resulting curve is not
ideal. Between 41.4% and 69.6%, the slope of the curveisactually positive.** While
the HIE results are not known between the four original data points, it is
counterintuitive that higher levels of cost-sharing would lead to higher inpatient
spending. In spite of its other advantages, the cubic formula is problematic for
producing spending levels by type of service, at least for inpatient care. Theresults
in Table 6 are not affected, however, because the coinsurance is 95%, one of the
original HIE data points, which is replicated by the cubic formulas.

If theexampl e person’ sspending wereall inpatient, each of thethree approaches
would predict total spending that is 22%-23% higher than if it were all outpatient.
Though large, thisdifference doesnot by itself merit accommodating type-of-service
factors. First, thisdifference occursat the 95% coinsurancelevel, an unusual amount
of cost-sharing for a plan. When calculating average coinsurance on individual
records, many may be at this coinsurance level, or even 100% if they are still inthe
plan’s deductible range. Of course, in the deductible range, dollar amounts are
relatively small. Thisleadsto the second point that, inthe aggregate, the differences
resulting from using separatefactorsby type of care may largely offset. For example,
the total medical spending amounts are based on the HIE data in which outpatient
care made up 46% of the total and inpatient care made up 54%. Applying those
percentages to the numbers for outpatient and inpatient in Table 6 yields $1,416 in
total medical for the elasticities, $1,439 for the induction factors, and $1,342 for the
cubic formulas. Only the calculated results using theinduction factorsvary from the
predicted total medical amount in Table 6 by more than adollar. Thus, aslong as

% These coinsurance points were calculated by taking the derivative of the equation and
solving it for Q' (p)=0.
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one is predicting total spending, rather than by type of care, it is arguable that the
total medical factors produce adequate results.

Example Using Actual Data. The preceding hypothesis was tested
informally by using person-level expenditure data from the 2002 Medical
Expenditure Panel Survey (MEPS) for those under age 65 with any health care
spending. These results are shownin Table 7.

Table 7. Average Predicted Spending, by Plan and Factor,
Based on 2002 MEPS

Plan Cubic formula Elasticity Induction factor
Free plan (total medical values) $2,186 $2,764 $2,161
95% coinsurance (total medical

values) $1,202 $1,520 $1,196

95% coinsurance

(inpatient/outpatient values) $1,161 $1,473 $1,145
o =

95% coinsurance (traditional Not applicable Not applicable $1.031

induction values)

Source: Congressional Research Service (CRS) calculations on 2002 Medical Expenditure Panel
Survey (MEPS).

Note: Among personsunder age 65 with health care spending. The“traditional inductionvalues’ are
0.7 for outpatient care and 0.3 for inpatient care.

Using the total-medical cubic formula, free-plan values were calculated,
producing an average of $2,186. Based on those estimates, total medical spending
was predicted to average $1,202 in a 95% coinsurance plan, or 55% of the free-plan
average.*® Separately predicting outpatient and inpatient care, using the respective
cubic formulas, yields total plan spending of $1,161, a difference of 3.5% from the
total-medical cubic formularesult. Thisresult emergesby outpatient spending being
49% of the free-plan level and inpatient spending being 60% of the free-plan level,
replicating the result in Table 1. The total-medical result of $1,202 differs from
$1,161 to the extent that the ratio of outpatient-to-inpatient spending in MEPS
differed from that in the HIE.

These results will also vary depending on which services are included in each
respective category. For example, if prescription drugswere not modeled separately
but were lumped into outpatient care, which is areasonable decision, the difference
in predicted total spending would be 5.7%, depending on whether type-of-service
formulas were used instead of the total medica formula.®*®

% For this analysis, “total medical” consists of inpatient care (inpatient hospital stays,
including zero-night stays and separately billing doctor expenses) and outpatient care
(office-based, outpatient-hospital and emergency-room visits).

% |t isnot clear whether or not the HIE outpatient results included prescription drugs. The
separate effect of cost-sharing on prescription drugs s discussed separately, which would
suggest they were not included in outpatient care. The next section of thisreport discusses
those results separately as well, so prescription drugs are left out of outpatient care here.



CRS-39

Aswas previously mentioned, when applying elasticities with afree plan, one
must decide whether to misuse the factors, calculating quasi-point elasticities, or
whether to use the constant elasticity values and thus predict constant spending
across abroad domain of cost-sharing. For thisexample (and for simplicity’ s sake),
the constant elasticitiesin Table 2 will be used to predict free-plan values based on
the MEPS data.

To createthe free-plan values, the three el asticities from the gray column of the
first threerowsin Table2 wereused. All recordsinthe MEPS datawith an average
coinsurance between 0% and 25% had their total expendituresincreased by 41% to
createthefree-plan spending level ¥ Thiswasthe case whether the person’ saverage
coinsurance was 0%, 25% or anything in between, whichisaflaw inthearc el asticity
when dealing with free-plan information. For coinsurance above 25% to 50%, the
increase to the estimated free-plan spending was 60%. For coinsurance above 50%,
the free-plan adjustment was 82%. Thisled to average free-plan spending estimated
at $2,764, 26% higher than the free-plan level predicted by the cubic formula.

Beginning with the free-plan spending estimated using the elasticity formula,
flawed as it is, predicting total spending in the 95% coinsurance plan is less
problematic. Eventhough aconstant adjustment emerges, thisisacceptablesincethe
elasticity onwhich that adjustment isbased relies on the same coinsurancelevel s (0%
and 95%) used to createthe elasticitiesfrom the HIE. Aswith the cubic formula, the
elasticity in this case will predict 55% of the free-plan value using the total-medical
elasticity. The outpatient and inpatient elasticities will yield 49% and 60% of free-
plan spending for those services, respectively. Based on the free-plan estimates, the
total-medical elasticity for a 95% coinsurance plan predicts average spending of
$1,520. At the same coinsurance level, applying the outpatient and inpatient
elasticities to those types of care separately produces an average value of $1,473.
The arc elasticities’ estimate of the 95% coinsurance vary by 3% depending on
whether the type-of-service elasticities are used versus the total-medical elasticity.
Of course, these results still differ dramatically from the cubic formula' s largely
because of the flawed nature of the arc elasticity’s formula for creating free-plan
values. Predicting total spending fromfree-plan spending isalso problematic except
when the coinsurance is at one of the HIE levels, which is the case here.

Aswith elasticities, continuousinduction factors can be cal culated over arange
of coinsurance levels in an attempt to improve precision, though its impact on
accuracy may be questionable. In applying induction factors to the MEPS data, the
factorsgivenin Table4 are used, turning to the next induction factor once the upper
coinsurance level of the pairsis exceeded. For example, to create free-plan levels
using the total-medical induction factors, 1.63 is used for coinsurance between 0%
and 25%. For coinsurance above 25% to 50%, 1.17 isused. For coinsurance above
50%, 0.86 isused. Thisled to average free-plan spending estimated at $2,161, about
1% lower than the free-plan level predicted by the cubic formula and substantially
lower than that predicted by the arc elasticity.

¥ (1-E)/(1+E) = (1+0.17)/(1-0.17)=1.41.
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Although the arc-élasticity and cubic formula replicate 55.0% of free-plan
spending at 95% coinsurance, the induction-factor results are dightly different for
total medical, at 55.4%. Thus, spending in the 95% coinsurance plan using the 0.47
induction factor averages $1,196. Calculating spending using the inpatient and
outpatient factors (0.42 and 0.54 respectively) instead yields an average of $1,145,
a difference of more than 4%. Had an inpatient induction factor of 0.3 and an
outpatient induction factor of 0.7 been used, spending would have averaged $1,031
in the 95% coinsurance plan, illustrating once again that the induction factors of 0.7
for outpatient careand 0.3 for inpatient care do not replicate HI E results consistently.

Based on the MEPS data, average spending in a 95% coinsurance plan varies
by 3% to 4%, depending on whether the total-medical or type-of-service formulas
and factors are used. However, these differences are also affected by what is
classified as outpatient versus inpatient care. It isimportant to note that thisisthe
coinsurance level where the difference by type of service would be greatest. Since
most plans would likely be at lower levels of coinsurance, where thereislittle or no
difference by inpatient versus outpatient care according to the HIE results, individual
analysts must decide whether such atype-of-service analysis is merited.

Prescription Drugs. Prescription drugs are a component of health care
spending that has received increasing attention from those who follow health
insuranceissues. Thisisnot surprising considering the growing proportion of health
care spending that it comprises. In 1980, around the time of the HIE, prescription
drugs made up 6% of health care spending. By 2003, that percentage had doubled,
to 12%.%® Not much attention was given to prescription drugs in the original HIE
results, but a reexamination of the available information is merited in light of
prescription drugs growing prominence as a feature of health care coverage. One
caveat of thisanalysisisthat because of the changes over the past 25 years—that is,
theincreasing number, variety, price and utilization of prescription drugs— the HIE
resultsregarding prescription drugs may be particularly out of date and inapplicable.
Considering the popular notion that demand for prescription drugs is most elastic
among health care goods and services, the section examines whether the HIE results
affirm that notion and, to the extent the difference is measurable, whether it should
be accounted for in microsimulation modeling.

Newhouseg, et a., presented their finding on the effect of a plan’s cost-sharing
on prescription drugs in thisway: “[O]ther than through its effect on [physician]
vigits, plan did little to alter drug use; that is, plan did not much affect either the
physician’ stendency to prescribe for apatient in the office or the patient’ s tendency
to fill the prescription. ... [A]lthough we saw evidence of medically inappropriate
overprescribing, the proportion of inappropriate prescribing did not vary much by
plan design. ... [C]ost-sharing reduced the use of both prescription and

# Figure5 of CRS Report RL31374, Health Expendituresin 2003, by Paulette C. Morgan
[http://www.congress.gov/erp/rl/pdf/RL31374.pdf]. The HIE plans covered prescription
drugs which at the time had “traditionally been poorly covered by health insurance plans.
... (A)bout 8 percent of total spending [in the HIE] wasfor drugs’ (from Newhouse, et al.,
p. 365). This may have been higher than the average for that time because of the HIE
coverage.
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nonprescription drugs; there was no evidence of substitution of over-the-counter
drugs for prescription drugs as cost-sharing increased” (p. 365).

These statements would suggest that the effect of cost-sharing on prescription
drug spending would be similar to that of total medical care, or outpatient care more
specifically. Other HIE results indicate that prescription drugs are quite different,
depending on on€’s interpretation. To understand this, it is helpful to recall the
discussion of the effect of cost-sharing on total medical carein the section presenting
selected HIE results. Figure 4 showed the association between cost-sharing and
spending in the original HIE plans, which had out-of-pocket maximums. However,
because of the out-of-pocket maximums, the nominal coinsurance failed to capture
all of cost-sharing in the plan. A separate estimate was derived by the HIE authors
to determine the “pure price effects’ associated with the HIE coinsurance levels,
shown as “Without out-of-pocket maximum” in Figure 4. The adequacy of these
numbers was affirmed by how they lined up with the average-coinsurance resullts,
shownin Figureb5, athough the analysiswaslimited in that the average coinsurance
levels did not exceed 31%.

All three sets of estimates — based on nominal coinsurance, average
coinsurance, and pure coinsurance (or pure price effects) — are not available for
prescription drugs. For purposes of thisreport, the last would seem most important,
which isthe piece not contained in the HIE results. The other two sets of estimates
for prescription drugs are shown in dashed linesin Figur e 13 along with the original
total-medical lines from Figure 5. The lighter dashed line in shows the relation
between nominal plan coinsurance and prescription-drug spending. The darker
dashed line uses the same prescription-drug spending levels but is based on the
average plan coinsurance. The points labeled in the figure are only for the
prescription-drug lines. No amounts were given for pure coinsurance, or pure price
effects, for prescription drugs. Lacking this, the other two sets of estimates must be
used to judge whether the total-medical values are adequate estimators for
prescription drugs.

As shown in Figure 13, the nominal coinsurance for prescription drugs
corresponds with the average- and pure-coinsurance levels for total medical
spending. Prescription-drug spending based on the average coinsurance appears
much different than for total medical spending. Thiswould seem to lead one to a
different conclusion than that of the HIE authors. The comparisonsin thefigure may
be suspect, however. For example, the average coinsurance for the dark, dashed line
inthefigureisfor all medical spending, not specifically for prescription drugs. This
is problematic because the average coinsurance specifically for prescription drugs
may be different, particularly if a disproportionate share of prescription-drug
spending took place bel ow the out-of-pocket maximum, whichisbelievable. If most
prescription drug spending took place below the out-of-pocket maximum, then the
nominal coinsurance would be closer to the actual average cost-sharing for
prescription drugs than would the plan’ stotal average coinsurance. Inthat case, the
lighter dashed linemay be preferred. Thiswould be consistent with the HIE authors
conclusions. It would al so make cal culating the effects of cost-sharing simpler, since
the total-medical values could be used for all types of care, including prescription
drugs.
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It is difficult to determine from the HIE what the pure price effects are on
prescription drug spending. Even if it were possible to determine, it would be
guestionable as to its applicability today. In lieu of any more recent experimental
information, it isarguablethat using total medical factorsisno worsethan any of the
other options, especialy considering the potential challenges of appropriately
applying additional factors in microsimulation modeling.

Figure 13. Effect of Coinsurance on Annual Per-Person Total Medical and
Prescription Drug Expenses, as a Percentage of Free Plan Expenses
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Source: Figure5and Congressional Research Service (CRS) calculationsfromNewhouseet al., Free
for All? Lessonsfromthe RAND Health Insurance Experiment (Cambridge, Massachusetts: Harvard
University Press, 1993), particularly Table 5.13.
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Conclusion

Arcelasticitiesand inductionfactorsareused in health policy circlestoreplicate
resultsfromtheRAND Health Insurance Experiment (HIE). Thisreport showed how
both methods have serious limitations, particularly for their practical applicationsin
microsimulation modeling.

Results based on arc elasticities are problematic when dealing with a plan, or
even arecord in a dataset, in which there is no cost-sharing. (Results from point
elasticities are not even calculable from a plan with no cost-sharing, which is one
reason why point elasticities were quickly dispensed with in this report.) If such a
freeplanisusedinapplying aparticular arc elasticity, total spending will be adjusted
by a constant percentage, regardless of the cost-sharing in the non-free plan. A
workaround was presented, adding another level of complexity to the application of
arc elasticities, but its appropriateness is questionabl e.

Induction factors can handle such free-plan information. Unfortunately, their
values are not reversible. Between two price-quantity points, two induction factors
emerge rather than one. This complicates the appropriate application of induction
factors.

One purported advantage of induction factors is that they can better handle
complicated plan structures. Thisis because they are calculated and applied based
on the dollar amounts of cost-sharing that individuals face in a plan. In addition,
induction factors predict spending by applying the new cost-sharing structure to the
old total spending, which also makes its application easier. The analysis in this
report showed, however, that the induction factors essentially rely on the average
coinsurance calculated from applying the original total spending to the new cost-
sharing structure. Arc elasticities do so as well with concomitant limitations
acknowledged. That induction factors effectively do the same thing, with the same
concomitant limitations, is typically obscured because the induction factorsrely on
the nominal dollar amounts. Thus, in actuality, induction factors have no inherent,
substantive advantage for handling complicated plan structures. Indeed, because of
their use of dollar cost-sharing based on the original total spending, the induction
factor isarguably inferior when dealing with pure-coinsurance plans, upon which the
HIE results in this report were based. This removes the primary rationae for
tolerating the induction factors' lack of reversibility.

The CRS/Hay model screate and use abaseline of free-planvaluesfor thousands
of recordg/individuals. Although arc elasticities and induction factors can be used
for thispurpose, their sensitivity to the specific factors' valuesin such circumstances
is additional cause for concern. Specia care must be taken to use the appropriate
values. Because the CRS/Hay models currently use induction factors, which are not
reversible, using the appropriate values is even more important and involved.
Presently, however, the models use constant values for the induction factors
regardless of coinsurance levels.* Either new factors should be used that vary by

% An adjustment has been built into the model s based on the dollar amounts of cost-sharing,
(continued...)
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coinsurance or anew method should be applied. Arc elasticitiesare not superior for
this purpose, given the method’ slimitations and the models' use of free-plan values.

In an effort to apply some method that would be particularly useful for
microsimulation modeling, the cubic formulawas derived. Its legitimacy is based
on the notion that a person’s experience in a plan as captured by their average
coinsuranceis appropriate for replicating HIE results. The cubic formula has many
of the desirable qualities that arc elasticities and induction factors sometimes lack.
The cubic formulais path neutral. Because it does not have separate factors that
must be cal culated, the cubicformulahasnoissuesregardingreversibility. Thecubic
formula faces no diminution of predictive power when dealing with free-plan
information. In addition, from a practical standpoint, it is much simpler to
appropriately implement in microsimulation modeling.

The key flaw of the cubic formulaisthat if one wants to separately model the
impact of cost-sharing changes by type of service (for example, inpatient versus
outpatient), new cubic formulas must be derived, aswasdoneinthisreport. Atleast
one of these cubic formulas produced quite undesirable results. The cubic formula
for inpatient care estimated that as coi nsurancerisesbetween 41.4% and 69.6%, there
would be higher inpatient spending. Whilethere are no HIE results between itsfour
original data points, this result is counterintuitive.

The HIE results also showed that, for most cost-sharing levels, thereislittle or
no difference in total spending resulting from separate application of cost-sharing
factors for certain types of medical care. Even for prescription drugs, the type of
health care popularly believed to be most affected by cost-sharing changes, the HIE
does not provide evidence that people respond dramatically different to changesin
cost-sharing compared to other types of care. Thisbeingthe case, it isarguable that
thecubicformulafor total medical isadequatefor predictingall kindsof cost-sharing
changes. Moreover, because predicted values can vary more from the cost-sharing
method used rather than the type-of-service variation, the choice of cost-sharing
method is arguably more important than dealing with type-of-service variations.

None of these methods — arc elasticities, induction factors, the cubic formula

— is perfect. Each has its advantages. Each has its flaws. Analysts face the

decision, given the advantages and flaws of each, of whichisbest for their purposes.

For the CRS/Hay models, which are presently built on abaseline of free-plan values

and use constant induction factors regardless of cost-sharing, the cubic formula
appears better able to replicate HIE results than the current approach.

%9 (...continued)

but this should have little or no impact on replicating the HIE results (or if there were an
impact, it would not be for this purpose), which vary by coinsurance regardless of the
nominal dollar amounts of cost-sharing.



